РЕШЕНИЕ ЗАДАЧ АНАЛИЗА И ПРОГНОЗИРОВАНИЯ СОСТОЯНИЙ ЭПОКОМПОЗИТНОГО МАТЕРИАЛА ПОД ВОЗДЕЙСТВИЕМ СТАТИЧЕСКОЙ НАГРУЗКИ ПРИ ЭКСПЛУАТАЦИИ СЭУ

Букетов А.В., Кравцова Л.В., Пирог А.П. Херсонская государственная морская академия (Украина)

Постановка задачи. Полимерными композитными материалами (ПКМ), или композитами, являются многокомпонентные материалы, состоящие из пластичной или термореактивной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и другими необходимыми свойствами.

Использование композитов позволяет улучшать механические, электромагнитные, физико-химические характеристики технологического оборудования СЭУ. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам. При этом ПКМ нашли широкое применение при изготовлении несущих конструктивных элементов при изготовлении и установлении машин и механизмов СЭУ, а также защитных, гидроизоляционных и антикоррозионных покрытий деталей дейдвудных комплексов.

При этом важным направлением при увеличении ресурса эксплуатации технологического оборудования СЭУ является комплексное исследование композитов с применением математического моделирования на основе результатов экспериментов. В свою очередь это позволяет оптимизировать их состав и прогнозировать эксплуатационные свойства разработанных материалов.

В данной работе рассматривается зависимость абсолютной деформации образца эпоксидного композита от продолжительности воздействия статической нагрузки. С этой целью построена математическая модель, адекватно отображающая все свойства и характеристики образца. Рассматривая абсолютную деформацию как случайный процесс, протекающий в системе, по результатам измерений приходим к выводу, что математическая модель рассматриваемого процесса относится к марковской цепи и поэтому подчиняется ее законам. При анализе зависимости абсолютной деформации от изменения нагрузки наблюдали серию состояний (от работоспособного до полного разрушения). В результате построили граф состояний системы, который может быть представлен в следующем виде:

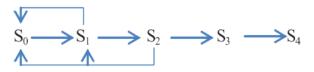


Рисунок 1. Граф состояний системы

Здесь S_0 — исходное состояние; S_1 —работоспособное состояние; S_2 — упругая деформация; S_3 — пластичная деформация; S_4 — разрушение. Стрелками показаны возможные переходы системы из одного состояния в другое при увеличении времени воздействия или снятии с образца статической нагрузки.

Цель исследований — определить вероятности состояний системы (эпоксидного композитного материала) при воздействии статической нагрузки.

На предварительном этапе в результате эксперимента получена зависимость абсолютной деформации от продолжительности воздействия статической нагрузки эпоксидного композита, содержащего 50 масс.ч. наполнителя (электрокорунд) на $100 \, \text{масс.}$ ч. эпоксидной смолы. Следует отметить, что исследования проводили при трехточечном статическом изгибе образцов с величиной нагрузки $F = 50 \, \text{H}$.

Таблица 1. Зависимость абсолютной деформации от времени воздействия нагрузки ПКМ.

Параметр	Состояния системы														
	S0	S1		S2			S3						S4		
<i>t</i> , ч	0,01	2	4	6	12	18	24	30	36	42	48	54	60	66	72
$\Delta L \times 10^{-3}$, M	68	71	74	76	79	80	81	83	84	84,6	85	86	87	88	90

Здесь ΔL – абсолютная деформация в каждый момент времени t.

Основными характеристиками марковских цепей являются вероятности $p_i(k) = p(S_i(k))(i=1,...,n;k=1,2,...)$ событий $S_i(k)$. Вероятности $p_i(k)$ (i=1,...,n;k=1,2,...) являются вероятностями состояний. Таким образом, вероятность i состояния на k шаге $p_i(k)$ является вероятностью того, что система S от k до (k+1) шага будет пребывать в состоянии S_i .

Запишем вероятности состояний в соответствии с графом состояний (рис. 1) в виде квадратной матрицы *п* порядка, сумма элементов каждой строки равна 1 (рис. 2).

	0	1	2	3	4
0	0	1	0	0	0
1	P ₁₀	P ₁₁	P ₁₂	0	0
2	0	P ₂₁	P ₂₂	P ₂₃	0
3	0	0	0	P ₃₃	P ₃₄
4	0	0	0	0	1

Рисунок 2. Теоретическая матрица состояний

Общее время наблюдения (суммарная частота) составляет 72 часа. Поэтому вероятности состояний p_i абсолютной деформации ΔL_i за весь период наблюдения равны $p_i = \Delta t_i / \sum t$. Для оценки вероятностей в строке матрицы состояний (рис. 2) выбрали три смежных состояния (S₀, S₁, S₂), которые реализуются в течение 24 часов. Вероятность каждого из состояний вычисляли как сумму вероятностей составляющих этого состояния. Аналогичным образом вычисляли вероятности состояний третьей (S₁, S₂, S₃) и четвертой (S₃, S₄) строк.

Таким образом, матрица состояний будет выглядеть следующим образом (рис. 3):

0	1	2	3	4	суммы
0	1	0	0	0	1
0,041667	0,125	0,833333	0	0	1
0	0,060606061	0,3030303	0,63636336	0	1
0	0	0	0,875	0,125	1
0	0	0	0	1	1

Рисунок 3. Матрица состояний

Для получения более полной характеристики состояний системы вычислим математические ожидания деформации под воздействием статической нагрузки ПКМ, а также дисперсию, т.е. разброс относительно наиболее ожидаемых значений деформации. В итоге получили значения, которые имеют следующий смысл. При воздействии статической нагрузки F = 50 H в ПКМ, содержащем 50 мас.ч. наполнителя на 100 мас.ч. эпоксидной смолы, от 0 до 24 часов наиболее вероятна абсолютная деформация $M(X) = 78.3 \times 10^{-3}$ м., с дисперсией D(X) = 11.3; при воздействии этой же статической нагрузки до 60 часов наиболее вероятна абсолютная деформация $M(X) = 82.8 \times 10^{-3}$ м, с дисперсией D(X) = 16.2; при воздействии от 30 до 72 часов наиболее вероятна абсолютная деформация $M(X) = 86 \times 10^{-3}$ м с дисперсией D(X) = 4.6.